

Welcome to Sushy’s documentation!

Contents:

	About Sushy

	Installation

	Usage

	Contributing

Indices and tables

	Index

	Module Index

	Search Page

Sushy

Sushy is a Python library to communicate with Redfish [http://www.dmtf.org/standards/redfish] based systems.

The goal of the library is to be extremely simple, small, have as few
dependencies as possible and be very conservative when dealing with BMCs
by issuing just enough requests to it (BMCs are very flaky).

Therefore, the scope of the library has been limited to what is supported
by the OpenStack Ironic [https://wiki.openstack.org/wiki/Ironic]
project. As the project grows and more features from Redfish [http://www.dmtf.org/standards/redfish] are
needed we can expand Sushy to fullfil those requirements.

	Free software: Apache license

	Documentation: http://sushy.rtfd.io

	Usage: http://sushy.readthedocs.io/en/latest/usage.html

	Source: http://git.openstack.org/cgit/openstack/sushy

	Bugs: http://bugs.launchpad.net/sushy

Features

	Abstraction around the SystemCollection and System resources (Basic
server identification and asset information)

	Systems power management (Both soft and hard; Including NMI injection)

	Changing systems boot device, frequency (Once or permanently) and mode
(UEFI or BIOS)

Check out the Usage page.

TODO

	Collect sensor data (Health state, temperature, fans etc...)

	System inspection (Number of CPUs, memory and disk size)

	Serial console

Installation

At the command line:

$ pip install sushy

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv sushy
$ pip install sushy

Usage

To use sushy in a project:

import logging

import sushy

Enable logging at DEBUG level
LOG = logging.getLogger('sushy')
LOG.setLevel(logging.DEBUG)
LOG.addHandler(logging.StreamHandler())

s = sushy.Sushy('http://localhost:8000', username='foo', password='bar')

Get the Redfish version
print(s.redfish_version)

Instantiate a system object
sys_inst = s.get_system('/redfish/v1/Systems/437XR1138R2')

Using system collections

Instantiate a SystemCollection object
sys_col = s.get_system_collection()

Print the ID of the systems available in the collection
print(sys_col.members_identities)

Get a list of systems objects available in the collection
sys_col_insts = sys_col.get_members()

Instantiate a system object, same as getting it directly
from the s.get_system()
sys_inst = sys_col.get_member(sys_col.members_identities[0])

Refresh the system collection object
sys_col.refresh()

Using system actions

Power the system ON
sys_inst.reset_system(sushy.RESET_ON)

Get a list of allowed reset values
print(sys_inst.get_allowed_reset_system_values())

Refresh the system object
sys_inst.refresh()

Get the current power state
print(sys_inst.power_state)

Set the next boot device to boot once from PXE in UEFI mode
sys_inst.set_system_boot_source(sushy.BOOT_SOURCE_TARGET_PXE,
 enabled=sushy.BOOT_SOURCE_ENABLED_ONCE,
 mode=sushy.BOOT_SOURCE_MODE_UEFI)

Get the current boot source information
print(sys_inst.boot)

Get a list of allowed boot source target values
print(sys_inst.get_allowed_system_boot_source_values())

Get the memory summary
print(sys_inst.memory_summary)

Get the processor summary
print(sys_inst.processors.summary)

If you do not have any real baremetal machine that supports the Redfish
protocol you can look at the Contributing page to learn how to
run a Redfish emulator.

Contributing

If you would like to contribute to the development of OpenStack, you must
follow the steps in this page:

http://docs.openstack.org/infra/manual/developers.html

If you already have a good understanding of how the system works and your
OpenStack accounts are set up, you can skip to the development workflow
section of this documentation to learn how changes to OpenStack should be
submitted for review via the Gerrit tool:

http://docs.openstack.org/infra/manual/developers.html#development-workflow

Pull requests submitted through GitHub will be ignored.

Bugs should be filed on Launchpad, not GitHub:

https://bugs.launchpad.net/sushy

Running a Redfish emulator

Testing and/or developing Sushy without owning a real baremetal machine
that supports the Redfish protocol is possible by running an emulator,
the sushy-tools [https://git.openstack.org/cgit/openstack/sushy-tools] project ships with two emulators that can be used
for this purpose. To install it run:

sudo pip install --user sushy-tools

Note

Installing the dependencies requires libvirt development files.
For example, run the following command to install them on Fedora:

sudo dnf install -y libvirt-devel

Static emulator

After installing sushy-tools [https://git.openstack.org/cgit/openstack/sushy-tools] you will have a new CLI tool named
sushy-static. This tool creates a HTTP server to serve any of the
Redfish mockups [https://www.dmtf.org/standards/redfish]. The files
are static so operations like changing the boot device or the power state
will not have any effect. But that should be enough for enabling
people to test parts of the library.

To use sushy-static we need the Redfish mockup files that can be
downloaded from https://www.dmtf.org/standards/redfish, for example:

wget https://www.dmtf.org/sites/default/files/standards/documents/DSP2043_1.0.0.zip

After the download, extract the files somewhere in the file-system:

unzip DSP2043_1.0.0.zip -d <output-path>

Now run sushy-static pointing to those files. For example to serve
the DSP2043-server mockup files, run:

sushy-static --mockup-files <output-path>/DSP2043-server

Libvirt emulator

The second emulator shipped by sushy-tools [https://git.openstack.org/cgit/openstack/sushy-tools] is the CLI tool named
sushy-emulator. This tool starts a ReST API that users can use to
interact with virtual machines using the Redfish protocol. So operations
such as changing the boot device or the power state will actually affect
the virtual machines. This allows users to test the library in a more
dynamic way. To run it do

sushy-emulator

Or, running with custom parameters
sushy-emulator --port 8000 --libvirt-uri "qemu:///system"

That’s it, now you can test Sushy against the http://locahost:8000
endpoint.

Enabling SSL

Both mockup servers supports SSL [https://en.wikipedia.org/wiki/Secure_Sockets_Layer] if you want Sushy with it. To set it
up, first you need to generate key and certificate files with OpenSSL
use following command:

openssl req -x509 -newkey rsa:2048 -keyout key.pem -out cert.pem -days 365

Start the mockup server passing the --ssl-certificate and
--ssl-key parameters to it to it, for example:

sushy-emulator --ssl-key key.pem --ssl-certificate cert.pem

Now to connect with SSL [https://en.wikipedia.org/wiki/Secure_Sockets_Layer] to the server use the verify parameter
pointing to the certificate file when instantiating Sushy, for example:

import sushy

Note the HTTP"S"
s = sushy.Sushy('https://localhost:8000', verify='cert.pem', username='foo', password='bar')

Index

 nav.xhtml

 Table of Contents

 		Welcome to Sushy's documentation!

 		About Sushy

 		Features

 		TODO

 		Installation

 		Usage

 		Contributing

 		Running a Redfish emulator

 		Static emulator

 		Libvirt emulator

 		Enabling SSL

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/up-pressed.png

_static/file.png

_static/comment-bright.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/down.png

